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Abstract. We describe the spectra and decays of π+π− and π±K∓ atoms within a non-relativistic effective
field theory. The evaluations of the energy shifts and widths are performed at next-to-leading order in
isospin symmetry breaking. We provide general formulae for all S-states, and discuss the states with
angular momentum one in some detail. The prediction for the lifetime of the π±K∓ atom in its ground
state yields τ10 = (3.7± 0.4) · 10−15 s.

1 Introduction

The DIRAC collaboration [1] at CERN has measured the
lifetime of pionium in its ground state, and the preliminary
result yields τπ,10 = [3.1+0.9

−0.7(stat)±1(syst)] ·10−15 s [2]. A
lifetime measurement of pionium at the 10% level allows
one to determine the S-wave ππ scattering length differ-
ence |a0

0−a2
0| at 5% accuracy. The measurement can then

be compared with theoretical predictions for the S-wave
scattering lengths [3–5] and with the results coming from
scattering experiments [6]. Particularly exciting is the fact
that this enterprise subjects chiral perturbation theory to
a very sensitive test [7]. New measurements are proposed
for CERN PS, J-PARC and GSI [8]. These experiments
aim to measure the lifetime of π+π− and π±K∓ atoms
simultaneously.

In order to extract the scattering lengths from such fu-
ture precision measurements, the theoretical expressions
for the energy shifts and decay widths of the π+π− and
π±K∓ atoms must be known to a precision that matches
the experimental accuracy. Nearly fifty years ago, Deser
et al. [9] derived the leading order formulae for the de-
cay width and the energy shift in pionic hydrogen. Sim-
ilar relations exist for π+π− and π±K∓ atoms [10,11],
which decay due to the strong interactions into 2π0 and
π0K0, respectively. Theoretical investigations on the spec-
trum and the decay of pionium have been performed be-
yond leading order in several settings. Potential scattering
has been used [12–14] as well as field-theoretical methods
[15–20]. In particular, the lifetime of pionium was stud-
ied by the use of the Bethe–Salpeter equation [19] and in
the framework of the quasipotential-constraint theory ap-
proach [20]. The width of the π+π− atom has also been
analyzed within a non-relativistic effective field theory
[21–23], which was originally developed for bound states
in QED by Caswell and Lepage [24]. The non-relativistic
framework has proven to be a very efficient method to
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evaluate bound-state characteristics. It was further ap-
plied to the ground state of pionic hydrogen [25–27] and
very recently to the energy levels and decay widths of
kaonic hydrogen [28]. Within the non-relativistic effective
field theory the isospin symmetry breaking corrections to
the Deser-type formulae can be evaluated systematically.
In [21–23,29,30] the lifetime of pionium was evaluated at
next-to-leading order in the isospin breaking parameters
α � 1/137 and (mu −md)2.

We presented in [31], the results for the S-wave decay
widths and strong energy shifts of π+π− and π±K∓ atoms
at next-to-leading order in isospin symmetry breaking.
Further, for the lifetime as well as for the first two energy-
level shifts, a numerical analysis was carried out. The aim
of this article is to provide the details that have been omit-
ted in [31]. Chiral perturbation theory (ChPT) allows one
to relate the result for the width of the π±K∓ atom to
the isospin odd πK scattering lengths a−

0 , while the strong
energy shift is proportional to the sum of isospin even and
odd scattering lengths a+

0 +a−
0 . The values for a+

0 and a−
0 ,

used in the numerical evaluation of the widths and strong
energy shifts, stem from the recent analysis of πK scat-
tering from Roy- and Steiner-type equations [33]. Within
ChPT, the πK scattering lengths have been worked out at
one-loop accuracy [34–36], and very recently even the chi-
ral expansion of the πK scattering amplitude at next-to-
next-to-leading order became available [37]. Particularly
interesting is that the isospin even scattering lengths a+

0
depends on the low-energy constant Lr

6 [38], and this cou-
pling is related to the flavor dependence of the quark con-
densate [39].

This paper is organized as follows: The general fea-
tures of π+π− and π±K∓ atoms are described in Sect. 2.
The non-relativistic effective field-theory approach is il-
lustrated in Sect. 3 by means of the π−K+ atom. The
discussion includes the Hamiltonian, the master equation,
and the matching to the relativistic πK amplitudes. In
Sect. 4, we present the results for the decay widths and
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strong energy shifts of the π±K∓ and π+π− atoms at
next-to-leading order in isospin symmetry breaking. The
role of transverse photons is discussed in Sect. 5. Trans-
verse photons do contribute to the electromagnetic part of
the energy shift. The pure QED contributions have been
worked out a long time ago, based on the Bethe–Salpeter
equation [40], the quasipotential approach [41,42] and an
improved Coulomb potential [43]. We reproduced this re-
sult within the non-relativistic framework. We further es-
timate the contributions from transverse photons to the
decay width of the π−K+ atom and show that they van-
ish at next-to-leading order in isospin symmetry breaking.
The contributions generated by the vacuum polarization
of the electron [22,25,44] are discussed in Sect. 6. Formally
of higher order in α, they are numerically not negligible.
A numerical analysis of the widths and the energy-level
shifts is carried out in Sect. 7 at O(p4, e2p2) in the chiral
expansion.

2 General features of ππ and πK atoms

In this section, we describe the general features of the sys-
tems that we are going to study. The π+π− and π±K∓
atoms are highly non-relativistic, loosely bound systems,
mainly formed by the Coulomb interaction. The average
momentum of the constituents in the CM frame lies in
the MeV range. Further, their decay widths ∼ 0.2 eV
are much smaller than the binding energies ∼ 103 eV in-
volved. The π+π− atom in its ground-state decays pre-
dominantly into a pair of two neutral pions, through the
strong transition π+π− → π0π0. The decay width into two
photons is suppressed by the factor 4 · 10−3 [1,29]. For a
detailed discussion of the decay channels of pionium, we
refer to [23]. The decays of the π−K+ atom have to con-
serve strangeness. Apart from the dominant S-wave decay
channel into π0K0, the only allowed decays are therefore
K0 + n1γ + n2e

+e− and π0K0 + n1γ + n2e
+e−, where

n1 + n2 > 0. Here n1 and n2 denotes the number of pho-
tons and e+e− pairs, respectively. In the relativistic the-
ory, the odd intrinsic parity process π−K+ → K0 + 2γ
corresponds to a local interaction in the Wess–Zumino–
Witten term [45], while the transition π−K+ → K0 + γ
occurs not until O(p6) [46].

The non-relativistic framework [21,23–25] we are going
to apply, provides a systematic expansion in the isospin
breaking parameter δ. In the case of pionium, we count α
as well as (mu −md)2 as small quantities of order δ. As
for the π±K∓ atom, both α and mu −md count as order
δ. The different power counting schemes are due to the
fact that in QCD, the chiral expansion of the pion mass
squared difference ∆π = M2

π+ −M2
π0 is of second order in

mu −md, while ∆K = M2
K+ −M2

K0 is linear in mu −md.
At leading and next-to-leading order in isospin symme-
try breaking, the π+π− (π−K+) atom decays into π0π0

(π0K0) exclusively. The leading order term for the width
is ofO(δ7/2), isospin breaking corrections contribute at or-
der δ9/2. The results for the S-wave decay widths at order
δ9/2 are presented in Sects. 4.1 and 4.3. At order δ5, also

other decay channels contribute. In Sect. 5.2, we estimate
the order of the various decays.

The energy-level splittings of the π+π− and π±K∓
atoms are induced by both electromagnetic and strong
interactions. At order δ3, the energy shift contributions are
exclusively due to strong interactions, while at order δ4,
both electromagnetic and strong interactions contribute.
It is both conventional and convenient to split the energy
shifts into a strong and an electromagnetic part, according
to1

∆Enl = ∆Eh
nl +∆Eem

nl . (2.1)

The expressions for the strong energy shift ∆Eh
nl at next-

to-leading order in isospin symmetry breaking are pre-
sented in Sects. 4.2 and 4.3. The electromagnetic part
∆Eem

nl is discussed in Sect. 5.1. Another important cor-
rection is generated by the vacuum polarization of the
electron. Formally, the vacuum polarization contributes
to the energy shift at order δ5 and to the width at or-
der δ11/2, but these corrections are amplified by powers
of the ratio µ+/me. Here µ+ denotes the reduced mass of
the bound system and me the electron mass. The vacuum
polarization contributions are discussed in Sect. 6.

In what follows, we proceed systematically and discuss
in detail the decays and bound-state spectra within the
non-relativistic framework.

3 Non-relativistic framework

3.1 Hamiltonian

The Hamiltonian consists of an infinite series of operators
with increasing mass dimensions – all operators allowed by
gauge invariance, space rotation, parity and time reversal
must be included. However, in the evaluation of the decay
width and the strong energy shift at next-to-leading order
in isospin symmetry breaking, only a few low dimensional
operators do actually contribute. For the π−K+ atom, the
following Hamiltonian achieves the goal:

H = H0 + HC + HD + HS,

HΓ =
∫

d3xHΓ(0,x), Γ = 0,C,D,S, (3.1)

with

H0 =
∑

i=±,0

{
π†

i

(
Mπi − ∆

2Mπi

)
πi

+K†
i

(
MKi − ∆

2MKi

)
Ki

}
,

HD = −
∑

i=±,0

{
π†

i

(
∆2

8M3
πi

+ · · ·
)
πi

+K†
i

(
∆2

8M3
Ki

+ · · ·
)
Ki

}
,

1 Note that this splitting cannot be understood literally, i.e.
there are contributions from strong interactions to ∆Eem

n0 .



J. Schweizer: Spectra and decays of ππ and πK atoms 485

HC = −2πα

(∑
±
±π†

±π± ±K†
±K±

)

×∆−1

(∑
±
±π†

±π± ±K†
±K±

)
,

HS =

− C1π
†
−K

†
+π−K+ − C2

(
π†

−K
†
+π0K0 + h.c.

)
− C3π

†
0K

†
0π0K0 − C4

(
π†

−
←→
∆K†

+π0K0 + h.c.
)

− C5

(
π†

−
←→
∆K†

+π−K+ + h.c.
)
− C6(π

†
−π−)∆(K†

+K+)

− C7

(
∇π†

−K
†
+∇π0K0 + h.c.

)
+ · · · , (3.2)

where u
←→
∆v

.= u∆v+v∆u. We work in the CM system and
thus omit terms proportional to the CM momentum. The
basis of operators with two space derivatives is chosen such
that none of them contributes to the S-wave decay width
and energy shift at the accuracy we are considering. For
this reason, we transformed the operator with two space
derivatives on the neutral fields by the use of the equations
of motion,

π†
−K

†
+π0
←→
∆K0 = −4µ0(Σ+ −Σ0)π

†
−K

†
+π0K0

+
µ0

µ+
π†

−
←→
∆K†

+π0K0. (3.3)

For the moment, we further neglect transverse photon con-
tributions. To the accuracy we are working, they do not
contribute to the decay width and to the strong energy-
level shifts. However, transverse photons do contribute
when we work out the electromagnetic energy-level shifts
in Sect. 5.1. The non-relativistic Lagrangian in the pres-
ence of transverse photons is given in Appendix A. The
Hamiltonian in (3.1) is built from the non-relativistic pion
and kaon fields

πi(0,x) =
∫

dν(p)eipxai(p),

Ki(0,x) =
∫

dν(p)eipxbi(p), i = ±, 0, (3.4)

with dν(p) .= d3p/(2π)3 and[
ai(p),a†

k(p′)
]

= (2π)3δ3(p− p′)δik,[
bi(p),b†

k(p′)
]

= (2π)3δ3(p− p′)δik. (3.5)

The two-particle states of zero total charge are defined by

|p1,p2〉+ = a†
−(p1)b

†
+(p2) |0〉,

|p3,p4〉0 = a†
0(p3)b

†
0(p4) |0〉, (3.6)

and the total and reduced masses Σi and µi, respectively,
read

Σi = Mπi +MKi , µi =
MπiMKi

Mπi +MKi

, i = +, 0. (3.7)

3.2 Master equation

To evaluate the decay width and the strong energy shifts
we make use of resolvents. This technique, which was de-
veloped by Feshbach a long time ago [47], has been dis-
cussed extensively in [23]. To remove the center of mass
momentum from the matrix elements of any operators R,
we introduce the notation

a〈p1,p2 | R(z) |p3,p4〉b = (2π)3δ3(p1 + p2 − p3 − p4)
× a(p1,p2 | R(z) |p3,p4)b, (3.8)

where a, b stand for 0,+. Further, we have

a(q,−q | R(z) |p,−p)b
.= a(q | R(z) |p)b. (3.9)

The master formula to be solved is given by the following
eigenvalue equation:

z − En −
∫

dν(P)〈Ψn0,P | τ̄ (z) |Ψn0, 0〉 = 0, (3.10)

where En = Σ+ − α2µ+/(2n2) denotes the nth Coulomb
energy and the unperturbed nth eigenstate is given by

|Ψn0,P〉
=
∫

dν(q)Ψn0(q)
∣∣∣∣ µ+

MK+
P + q,

µ+

Mπ+
P− q

〉
+
.(3.11)

Here Ψn0(q) stands for the Coulomb wave function of the
bound π±K∓ system in momentum space. The operator
τ̄ , defined through

τ̄ = V + VḠn
Cτ̄ , V = HD + HS, (3.12)

is regular in the vicinity of En. The quantity Ḡn
C stands for

the nth energy eigenstate singularity removed Coulomb
resolvent,

Ḡn
C = GC

{
1−

∫
dν(P) |Ψn0,P〉〈Ψn0,P |

}
,

GC =
1

z −H0 −HC
. (3.13)

The master equation presents a compact form of the
Rayleigh–Schrödinger perturbation theory. If we insert τ̄
iteratively into (3.10), the eigenvalue equation becomes

z = En − |Ψn0(x = 0)|2 [C1 + C2
2J0(z)

]
+ · · · , (3.14)

where Ψn0(x = 0) stands for the Coulomb wave function in
coordinate space and J0 denotes the loop integral in (D.3).
The function J0 is analytic in the complex z plane, except
for a cut on the real axis starting at z = Σ0. The imaginary
part of J0 has the same sign as Im z throughout the cut
z plane, which does not allow (3.14) to have a solution
on the first Riemann sheet. However, if we analytically
continue J0 from the upper rim of the cut to the second
Riemann sheet, we find a solution at z = Re z + i Im z,
with
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Re z = En −
α3µ3

+C1

πn3 + · · · ,

Im z = −α
3µ3

+µ0

2π2n3 C2
2
√
ρn + · · · , (3.15)

and ρn = 2µ0 (En −Σ0). In the following, we evaluate the
S-wave decay width Γn0 = −2Im z at order δ9/2 and the
energy shift ∆En0 = Re z − En at order δ4. We focus on
the strong part of the energy shift only; the evaluation of
the electromagnetic energy shift is discussed in Sect. 5.1.
As in [23], we reduce (3.10) to a one-channel problem with
an effective potential W,

�τ̄� = �W�+ �W�Ḡn
C�τ̄�, (3.16)

where

W = V + V�0Ḡ
n
C
{
1− �0V�0Ḡ

n
C
}−1

�0V. (3.17)

Here � (�0) denotes the charged (neutral) two-particle pro-
jector

� =
∫

dν(p1)dν(p2) |p1,p2〉++〈p1,p2 |,
�0 = 1− �. (3.18)

The matrix element of W between charged states takes
the form2

+(q |W(z) |p)+ = (2π)3δ3(q− p)

×
[
−p4

8

(
1

M3
π+

+
1

M3
K+

)
+ · · ·

]
+ w(z) + w1(z)p2

+ w2(z)q2 + w3(z)pq + · · · (3.19)

To the accuracy we are working in, only the constant term
w(z) contributes to the decay width and strong energy
shift. We get for the S-wave decay width of the π−K+

atom at order δ9/2

Γn0 = −2 |Ψn0(x = 0) |2 Imw(En)
× (1 + 2Rew(En)〈ḡn

C(En)〉) +O(δ5), (3.20)

while the S-wave energy-level shifts due to strong interac-
tions read at order δ4,

∆Eh
n0 = |Ψn0(x=0) |2Rew(En)
× (1 + Rew(En)〈ḡn

C(En)〉) +O(δ5). (3.21)

The quantity 〈ḡn
C(En)〉, given in Appendix C, is related

to the integrated Schwinger Green function [48]. The real
and imaginary part of w(z) are given by

Rew(En) = −C1 +
C2

2C3µ
2
0

4π2 ρn,

Imw(En) = −µ0
√
ρn

2π
C2

2

×
[
1− C2

3µ
2
0ρn

4π2 +
5µ0ρn

8
M3

π0 +M3
K0

M3
π0M3

K0

]
.(3.22)

The decay width (3.20) and energy shift (3.21) still depend
on the effective couplings Ci, which have to be related to
physical quantities.

2 The delta function term contributes to the electromagnetic
energy shift; see (5.6).

3.3 Matching procedure

We now determine the diverse couplings from match-
ing the non-relativistic and the relativistic amplitudes at
threshold. With the effective Lagrangian in (A.2), (A.4)
and (A.5) we may calculate the non-relativistic π−K+ →
π0K0 and π−K+ → π−K+ scattering amplitudes at
threshold at order δ. Again, we may omit contributions
from transverse photons. The radiative corrections to the
one-particle irreducible amplitudes, generated by trans-
verse photons, vanish at threshold at order e2.

The coupling C3 enters the decay width (3.20) at order
δ9/2 and the energy shift (3.21) at order δ4 and is therefore
needed at O(δ0) only. However, we have to determine both
C1 and C2 at next-to-leading order in isospin symmetry
breaking. The relativistic amplitudes are related to the
non-relativistic ones through

T lm;ik
R (q;p) = 4 [ωi(p)ωk(p)ωl(q)ωm(q)]

1
2 T lm;ik

NR (q;p),
(3.23)

where ωi(p) = (M2
i +p2)1/2 and p, (q) denotes the incom-

ing (outgoing) relative 3-momentum. In the isospin sym-
metry limit, only the lowest order of the non-relativistic
Lagrangian contributes at threshold and the effective cou-
plings C1, C2 and C3 yield

C1 =
2π
µ+

(
a+
0 + a−

0

)
, C2 = −2

√
2π

µ+
a−
0 ,

C3 =
2π
µ+

a+
0 , (3.24)

where a+
0 and a−

0 denote the isospin even and odd S-wave
scattering lengths, the notation used is specified in Ap-
pendix B. The πK scattering lengths are defined in QCD,
at mu = md = m̂ and Mπ

.= Mπ+ , MK
.= MK+ .

To match the coupling C2 including isospin symmetry
breaking effects, we calculate the real part of the non-
relativistic π−K+ → π0K0 scattering matrix element in
the vicinity of the threshold at order δ. In absence of vir-
tual photons, the real part of the amplitude at threshold
reads

ReT 00;±
NR (q;p) = C2 + C2C

2
3J0(Σ+)2 + · · · (3.25)

The ellipsis denotes terms which vanish at threshold or are
of higher order in the parameter δ. The one-loop integral
J0 is given in Appendix D. Bubbles with mass insertions
and/or derivative couplings do not contribute at thresh-
old at order δ, since they contain additional factors of p2

and/or Σ+ −Σ0.
We now include the Coulomb interaction. Feynman

graphs with a Coulomb photon attached such that the
heavy fields must propagate in time to connect the two
vertices all vanish. This is because we may close the inte-
gration contour over the zero-component of the loop mo-
mentum in the half-plane where there is no singularity
in the propagators. One example is the self-energy dia-
gram, which vanishes at order α. As a result of this, there
is no mass renormalization in the non-relativistic theory
and the mass parameters Mπi and MKi , i = 0,+ in the
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Fig. 1. One-photon exchange diagrams for the π−K+ → π0K0

scattering amplitude. The dotted line denotes a Coulomb pho-
ton. The dots stand for the couplings Ci, i = 1, 2

non-relativistic Lagrangian (A.4) stand for the physical
meson masses. The amplitude at threshold contains both
infrared and ultraviolet singularities, coming from the one-
Coulomb photon exchange diagrams depicted in Fig. 1.
Around threshold, we get for the one-Coulomb exchange
diagrams,

T 00;±
NR (q;p) = −C2VC(p, P 0

thr)
[
1 + C1J+(P 0

thr)
]

+ C1C2BC(P 0
thr) + · · · , (3.26)

where P 0
thr = Σ+ + p2/(2µ+). The Coulomb vertex func-

tion VC in Fig. 1a and the two-loop integral BC in Fig. 1c
are given in Appendix D. The integral J+, specified in
(D.4), has to be evaluated at d 	= 3, because the vertex di-
agram generates an infrared singular Coulomb phase [49]
at threshold. We split off this phase θc, according to

T 00;±
NR (q,p) = eiαθc T̂ 00;±

NR (q,p),

θc =
µ+

|p|µ
d−3

{
1

d− 3
− 1

2
[ln4π + Γ ′(1)] + ln

2|p|
µ

}
,

(3.27)

where µ denotes the running scale. The remainder T̂ 00;±
NR

is free of infrared singularities at threshold, at order δ. We
find for the real part

Re T̂ 00;±
NR (q,p) =

B1

|p| +B2ln
|p|
µ+

+
1
N

ReA00;±
thr +O(p),

(3.28)
with

B1 = C2
απµ+

2
+o(δ), B2 = −C1C2

αµ2
+

π
+o(δ), (3.29)

and

N = 4Mπ+MK+ +
MK+ −Mπ+

MK+ +Mπ+
(∆K −∆π) . (3.30)

At order δ, the constant term in (3.28) reads

1
N

ReA00;±
thr

= C2

{
1− C2

3
µ3

0(Σ+ −Σ0)
2π2

+ C1
αµ2

+

2π

[
1− Λ(µ)− ln

4µ2
+

µ2

]}
+ o(δ). (3.31)

The ultraviolet divergence Λ(µ), given in (C.5), stems
from the two-loop diagram BC and may be absorbed in
the renormalization of the coupling C2,

= +�
���

��
�������

��
��

��

��
��

��

��
��

��

��
��

��

�

Fig. 2. Non-relativistic π−K+ → π−K+ scattering amplitude.
The blob describes the vector form factor of the pion and kaon.
T̄ ±;±

NR denotes the truncated amplitude

Cr
2(µ) = C2

[
1− αµ2

+

2π
C1Λ(µ)

]
. (3.32)

We now determine the coupling constant C1. At α = 0,
the real part of the non-relativistic π−K+ → π−K+ scat-
tering amplitude reads at threshold

ReT±;±
NR (p,p) = C1 + C3C

2
2J0(Σ+)2 + · · · , (3.33)

where the ellipsis denotes contributions which vanish at
threshold or are of o(δ). In the presence of virtual pho-
tons, we first have to subtract the one-photon exchange
diagram from the full amplitude, as displayed in Fig. 2.
The coupling constant C1 is now determined by the one-
particle irreducible part of the amplitude. The truncated
part T̄±;±

NR again contains one-photon exchange diagrams
as shown in Fig. 3,

T̄±;±
NR (p,p) = −2C1VC(p, P 0

thr)
[
1 + C1J+(P 0

thr)
]

+C2
1BC(P 0

thr) + · · · (3.34)

All diagrams with a Coulomb photon exchange between
an incoming and an outgoing particle vanish, because the
pions (kaons) must propagate in time in order to connect
the two vertices. Again the vertex function VC leads to an
infrared singular Coulomb phase at threshold,

T̄±;±
NR (p,p) = e2iαθc T̂±;±

NR (p,p), (3.35)

where T̂±;±
NR is free of infrared singularities at threshold

at order δ. Further, the real part of the infrared regular
amplitude T̂±;±

NR is given by

Re T̂±;±
NR (p,p) =

B′
1

|p| +B′
2ln
|p|
µ+

�
�

�
�

�
�

�
�

�
�

�
�

�
�
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�
�

Fig. 3. One-photon exchange diagrams for the truncated
π−K+ → π−K+ scattering amplitude. The dotted line de-
notes a Coulomb photon. The dot denotes the coupling C2
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+
1

4Mπ+MK+
ReA±;±

thr +O(p), (3.36)

with

B′
1 = C1απµ+ + o(δ), B′

2 = −C
2
1αµ

2
+

π
+ o(δ), (3.37)

and

1
4Mπ+MK+

ReA±;±
thr

= C1

{
1 +

C1αµ
2
+

2π

[
1− Λ(µ)− ln

4µ2
+

µ2

]}

−C
2
2C3µ

3
0

2π2 (Σ+ −Σ0) + o(δ). (3.38)

Here, the ultraviolet pole term Λ(µ) in BC is removed by
renormalizing the coupling C1, according to

Cr
1(µ) = C1

[
1− αµ2

+

2π
C1Λ(µ)

]
. (3.39)

The above renormalization of the low-energy couplings C1
and C2 eliminates at the same time the ultraviolet diver-
gences contained in the expressions for the decay width
(3.20) and the energy shift (3.21). We assume that the
relativistic πK amplitudes at order δ have the same sin-
gularity structure as the non-relativistic amplitudes and
use (3.23) to match the non-relativistic expressions to
the relativistic ones. The calculations of the relativistic
π−K+ → π0K0 and π−K+ → π−K+ scattering ampli-
tudes have been performed at O(p4, e2p2) in [36,50,51].
Both the Coulomb phase and the singular term ∼ ln|p|
are absent in the real part of the amplitudes at this order
of accuracy; they first occur at order e2p4. The quantity
ReA00;±

thr (ReA±;±
thr ) is determined by the constant term

occurring in the threshold expansion of the correspond-
ing relativistic amplitude. Further, the relativistic calcu-
lations [36,50,51], contain the same singular contribution
∼ 1/|p| as the non-relativistic amplitude in (3.28) and
(3.36).

The results for the matching of the coupling constants
Cr

1(µ) and Cr
2(µ) yield at next-to-leading order in isospin

symmetry breaking,

Cr
2(µ) =

1
N

ReA00;±
thr − 2

√
2πa−

0

[
2(Σ+ −Σ0)(a+

0 )2

+α
(

ln
4µ2

+

µ2 − 1
)

(a+
0 + a−

0 )
]
, (3.40)

and

Cr
1(µ) =

1
4Mπ+MK+

ReA±;±
thr + 8π(Σ+ −Σ0)a+

0 (a−
0 )2

+2πα
(

ln
4µ2

+

µ2 − 1
)

(a+
0 + a−

0 )2. (3.41)

4 Strong energy shift and width

The matching relations in Sect. 3.3 allow us to specify the
results for the decay width and the strong energy shift
in terms of the relativistic πK scattering amplitudes at
threshold. The expressions are valid at next-to-leading or-
der in isospin symmetry breaking, and to all orders in the
chiral expansion.

4.1 S-wave decay width of the πK atom

The matching results in (3.24) and (3.40) yield for the
decay width at order δ9/2 in terms of the relativistic
π−K+ → π0K0 amplitude at threshold,

Γn0 =
8α3µ2

+

n3 p∗
nA2 (1 +Kn) ,

A = − 1
8
√

2π
1
Σ+

ReA00;±
thr + o(δ), (4.1)

where

Kn =
Mπ+∆K +MK+∆π

Mπ+ +MK+
(a+

0 )2

− 4αµ+(a+
0 + a−

0 )
[
ψ(n)− ψ(1)− 1

n
+ ln

α

n

]
+ o(δ)

(4.2)

and ψ(n) = Γ ′(n)/Γ (n). Aside from the kinematical fac-
tor p∗

n, the decay width is expanded in powers of α and
mu −md. The outgoing relative 3-momentum

p∗
n =

1
2En

λ
(
E2

n,M
2
π0 ,M2

K0

)1/2
, (4.3)

with λ(x, y, z) = x2 + y2 + z2− 2xy− 2xz− 2yz, is chosen
such that the total final state energy corresponds to the
nth energy eigenvalue of the π−K+ atom. In the isospin
limit, the π−K+ → π0K0 amplitude at threshold is deter-
mined by the isospin odd scattering length a−

0 . In order
to extract a−

0 from the above result of the decay width,
we first have to subtract the isospin breaking contribution
from the amplitude. We expand the normalized amplitude
in powers of the isospin breaking parameter δ,

A = a−
0 + ε+ o(δ). (4.4)

The isospin breaking corrections ε have been evaluated at
O(p4, e2p2) in [50,51]. See also the comments in Sect. 7.
We may now rewrite the expression for the width in the
following form:

Γn0 =
8α3µ2

+

n3 p∗
n(a−

0 )2 (1 + δK,n) +O(δ5),

δK,n =
2ε
a−
0

+Kn. (4.5)

The corrections δK,n to the Deser-type formula have been
worked out at order α, mu −md, αm̂ and (mu −md)m̂.
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Table 1. Next-to-leading order corrections to the Deser-type
formulae

102δh,1 102δh,2 102δ′
h,1 102δ′

h,2

π+π− atom 5.8± 1.2 5.6± 1.2 6.2± 1.2 6.1± 1.2
π±K∓ atom 4.0± 2.2 3.8± 2.2 1.7± 2.2 1.5± 2.2

The corrections δK,n, where n = 1, 2 are given numerically
in Table 1.

For the P-wave decay width into π0K0, the leading
order term is proportional the square of the coupling C7
and of order δ13/2. After performing the matching, we get
at leading order

Γn1,π0K0 =
8(n2 − 1)

n5 α5µ4
+p

∗
n

3(a−
1 )

2
, (4.6)

where a−
1 denotes the P-wave scattering length.

4.2 Strong energy shift of the πK atom

With the matching results in (3.24) and (3.41), we may
specify the S-wave energy shifts at order δ4, in terms of
the relativistic truncated π−K+ → π−K+ amplitude at
threshold,

∆Eh
n0 = −2α3µ2

+

n3 A′ (1 +K ′
n) ,

A′ =
1

8πΣ+
ReA±;±

thr + o(δ), (4.7)

with

K ′
n = −2αµ+(a+

0 + a−
0 )
[
ψ(n)− ψ(1)− 1

n
+ ln

α

n

]
+o(δ). (4.8)

For the ground state, the result agrees with the one ob-
tained for the strong energy shift in pionic hydrogen [25],
if we replace µ+ with the reduced mass of the π−p atom
and ReA±;±

thr with the regular part of the π−p amplitude
at threshold.

In the isospin limit, the normalized amplitude A′ re-
duces to the sum of the isospin even and odd scattering
lengths a+

0 + a−
0 . Again, we expand A′ in powers of α and

mu −md,
A′ = a+

0 + a−
0 + ε′ + o(δ). (4.9)

The corrections ε′ have been evaluated at O(p4, e2p2) in
[36,51]. See also the comments in Sect. 7. The isospin
breaking corrections to the Deser-type formula read at
next-to-leading order:

∆Eh
n0 = −2α3µ2

+

n3 (a+
0 + a−

0 )
(
1 + δ′

K,n

)
+O(δ5),

δ′
K,n =

ε′

a+
0 + a−

0
+K ′

n, (4.10)

where δ′
K,n has been worked out at order α, mu−md, αm̂

and (mu−md)m̂ in the chiral expansion. For the first two

energy levels, the numerical values for δ′
K,n are given in

Table 1. As concerns the energy splittings for l = 1 and
n ≥ 2, the leading order contribution is given by

∆Eh
n1 = −2C6∇Ψ∗

n1(x = 0)∇Ψn1(x = 0). (4.11)

Here Ψn1 denotes the Coulomb wave function with angular
momentum l = 1. The low-energy coupling constant C6
is determined through the l = 1 partial wave contribution
to the relativistic π−K+ → π−K+ scattering amplitude
and we find for the energy shift,

∆Eh
n1 = −2(n2 − 1)

n5 α5µ4
+
(
a+
1 + a−

1

)
. (4.12)

The result is proportional to the combination a+
1 + a−

1
of P-wave scattering lengths and suppressed by a factor
of α5.

4.3 Pionium

For pionium, we adopt the convention used in [23,30] and
count α and (mu − md)2 as small isospin breaking pa-
rameters of order δ. The decay width and energy shifts of
the π+π− atom can be obtained from the formulae (3.20),
(3.21) and (4.11) through the following substitutions of
the masses MK+ →Mπ+ ,MK0 →Mπ0 and coupling con-
stants3:

C1 → c1, C2 →
√

2(c2 − 2c4∆π),
C3 → 2c3, C6 → c6. (4.13)

The factor 2 in substituting C3 comes from the dif-
ferent normalization of the π0π0 state |p3,p4〉0 =
a†
0(p3)a

†
0(p4)|0〉. For the coupling constant C2, the sub-

stitution is non-trivial because our basis of operators with
two space derivatives differs from the one used in [23,30].
See also the comment in Sect. 3.1. The result for the S-
wave decay width of pionium reads at order δ9/2

Γπ,n0 =
2

9n3α
3p∗

π,nA2
π (1 +Kπ,n) ,

Aπ = a0
0 − a2

0 + επ + o(δ), (4.14)

where

Kπ,n =
κ

9
(
a0
0 + 2a2

0
)2

− 2α
3
(
2a0

0 + a2
0
) [
ψ(n)− ψ(1)− 1

n
+ ln

α

n

]
+ o(δ),

p∗
π,n =

(
∆π − α2

4n2M
2
π+

)1/2

, (4.15)

and κ = M2
π+/M2

π0 − 1. The quantity Aπ is defined as
in [23,30]. The isospin symmetry breaking contributions
επ have been evaluated at O(p4, e2p2) in [23,30,52]. The
corrections επ are of the order of α and αm̂. This is due to

3 The ci are the low-energy constants occurring in [23,30].
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the fact that in the π+π− → π0π0 scattering amplitude
at threshold, the quark mass difference shows up at order
(mu−md)2m̂ only. For the decay width of the ground state
at order δ9/2, we reproduce the result obtained in [20,23,
30]. Again we may rewrite the formula for the width:

Γπ,n0 =
2α3

9n3 p
∗
π,n(a0

0 − a2
0)

2 (1 + δπ,n) +O(δ5),

δπ,n =
2επ

a0
0 − a2

0
+Kπ,n. (4.16)

The parameter δπ,n contains the isospin breaking correc-
tions to the Deser-type formula at next-to-leading order.
The numerical values for δπ,n, with n = 1, 2 are listed in
Table 1. The decay width of the P-states into a pair of two
neutral pions is forbidden by C invariance.

The strong energy shift of the π+π− atom at order δ4
yields

∆Eh
π,n0 = −α

3Mπ+

n3 A′
π

(
1 +K ′

π,n

)
,

A′
π =

1
6
(
2a0

0 + a2
0
)

+ ε′π,

K ′
π,n = −α

3
(
2a0

0 + a2
0
) [
ψ(n)− ψ(1)− 1

n
+ ln

α

n

]
+o(δ), (4.17)

where A′
π is defined analogously to the quantity A′ dis-

cussed in Sect. 4.2. The isospin symmetry breaking contri-
butions ε′π have been calculated at O(p4, e2p2) in [53,54].
Again the corrections ε′π are of order α and αm̂. At order
δ4, the Deser-type formula is changed by isospin breaking
corrections, according to

∆Eh
π,n0 = −α

3Mπ+

6n3 (2a0
0 + a2

0)
(
1 + δ′

π,n

)
+O(δ5),

δ′
π,n =

6ε′π
2a0

0 + a2
0

+K ′
π,n. (4.18)

For the first two energy levels, the numerical values for
δ′
π,n are given in Table 1. Finally, the leading order contri-

bution to the strong energy-level shift for l = 1 and n ≥ 2
reads

∆Eh
π,n1 = − (n2 − 1)

8n5 α5M3
π+a1

1, (4.19)

where a1
1 denotes the P-wave ππ scattering length.

5 Transverse photons

We now concentrate on the contributions coming from
transverse photons. At order δ4, the energy-level shifts in
π+π− and π±K∓ atoms contain apart from the strong en-
ergy shift also an electromagnetic contribution as well as
finite size effects due to the electromagnetic form-factors
of the pion and kaon. We further discuss the contributions
from transverse photons to the decay width of the π−K+

atom and show that they do not contribute at order δ9/2.
For pionium, the various higher order decay channels have
been discussed in [23].

5.1 Electromagnetic energy-level shifts

As mentioned in Sect. 2, we split the total energy shift
∆Enl in (2.1) into the strong part displayed in (4.7) and an
electromagnetic contribution ∆Eem

nl . The electromagnetic
part is of order α4 and contains both pure QED correc-
tions as well as finite size effects due to the charge radii of
the pion and kaon; see Appendix A. The energy shift con-
tributions due to pure QED have been evaluated by the
use of the Bethe–Salpeter equation [40], the quasipotential
approach [41,42] and an improved Coulomb potential [43].
Nevertheless, we find it useful to provide the calculation
within the non-relativistic framework.

Again, we start with the master equation (3.10), but
instead of the effective potential W, we consider the op-
erator τ̄ in the second iterative approximation,

τ̄ = V + VḠn
CV +O(V3). (5.1)

The non-relativistic Lagrangian including transverse pho-
tons (A.2), (A.4) and (A.5) gives rise to the following per-
turbation:

V = HD + HS + eHγ + e2λHλ,

Hγ = iA
[

1
Mπ+

π†
−∇π− − 1

MK+
K†

+∇K+

]
,

Hλ = π†
−K

†
+π−K+. (5.2)

The photon field A is given by

A(0,x) =
∫

d3k
(2π)32k0

×
∑

r=1,2

[
ε(k, r) aγ(k, r)eikx + ε∗(k, r)a†

γ(k, r)e−ikx] ,
(5.3)

where k0 .= |k| and ε(k, r) denote the transversal polar-
ization vectors. The operator aγ satisfies the commutation
relation,[

aγ(k, r), a†
γ(k′, r′)

]
= 2k0(2π)3δ3(k− k′)δrr′ , (5.4)

and the one-photon states read

|k, r〉 = a†
γ(k, r)|0〉. (5.5)

The electromagnetic contributions to the energy-level
shifts consists of

∆Eem
nl = − 1

8µ3
+

(
1− 3µ+

Σ+

)

×
∫

d3rΨ∗
nl(r)∆

2Ψnl(r) + e2λ|Ψn0(x = 0)|2

−
∫

dν(p)|Ψnl(p)|2
[
Σ̂π(Ωn,p) + Σ̂K(Ωn,p)

]

− e2

Mπ+MK+

∫
dν(p)dν(p′)Ψ∗

nl(p)Gγ(p,p′)Ψnl(p′),

(5.6)
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Fig. 4. Self-energy a and one-photon exchange contributions
b to the electromagnetic energy shift. The twisted lines denote
transverse photons

with Ωn = Σ+ + p2/(2µ+) − En and Ψnl denotes the
Coulomb wave function for arbitrary n and l. Here, the
first term contains the mass insertions HD, the second de-
scribes the finite size effects due to Hλ, while the last two
terms come from the self-energy and one-photon exchange
diagrams depicted in Fig. 4a,b.

To avoid contributions from hard photon momenta,
we use the threshold expansion [55,56] to evaluate the
self-energy contributions. This procedure is outlined in
Appendix D and the threshold expanded self-energy Σ̂h,
where h = π,K, is specified in (D.17). As can be read
off from the wave function in momentum space, the rel-
ative 3-momentum p is of order δ. Hence the quantities
Σ̂π(Ωn,p) and Σ̂K(Ωn,p) count as order δ5 and are be-
yond the accuracy of our calculation.

What remains to be calculated is the one-photon ex-
change contribution4. The integrand

Gγ(p,p′)

=
1

|p− p′|
[
α2µ+

2n2 +
p2

2Mπ+
+

p′2

2MK+
+ |p− p′|

]−1

×1
4

[
(p + p′)2 − (p2 − p′2)2

(p− p′)2

]
, (5.7)

is an inhomogeneous function in the parameter δ, and to
the accuracy we are working required at leading order in
δ only,

Gγ(p,p′) =
1
4

1
|p− p′|2

[
(p + p′)2 − (p2 − p′2)2

(p− p′)2

]
+ · · ·
(5.8)

In order to evaluate the one-photon exchange contribu-
tions, we replace the terms ∼ p2Ψ∗

nl(p) and ∼ p′2Ψnl(p′)
by making use of the Schrödinger equation,[

p2 +
α2µ2

+

n2

]
Ψnl(p) = 8παµ+

∫
dν(q)

1
|p− q|2Ψnl(q).

(5.9)
Further, we use the Fourier transform of |p − p′|−2,
|p − q|−2 and |p′ − q|−2 to express the wave functions
in coordinate space. The one-photon exchange contribu-
tion now reads at order α4,

4 We thank A. Rusetsky for a very useful communication
concerning technical aspects of the calculation.

πα
µ+Σ+

|Ψn0(x = 0)|2 +
α3µ+

n2Σ+
〈r−1〉 − 3α2

2Σ+
〈r−2〉, (5.10)

where the expectation values are defined as

〈r−k〉 =
∫

d3rΨ∗
nl(r)

1
|r|k Ψnl(r), k = 1, 2. (5.11)

The electromagnetic energy shift at order α4 yields

∆Eem
nl =

α4µ+

n3

(
1− 3µ+

Σ+

)[
3
8n
− 1

2l + 1

]

+
4α4µ3

+λ

n3 δl0 +
α4µ2

+

Σ+

[
1
n3 δl0 +

1
n4 −

3
n3(2l + 1)

]
+ O(α5lnα). (5.12)

Here, the first terms is generated by the mass insertions,
the second one contains the finite size effects and the
last one stems from the one-photon exchange contribu-
tions (5.10). For n and l arbitrary, we get the same result
for the pure QED contributions as [40,41,43]. Further the
formula for the ground state agrees with the result ob-
tained in [25] for the electromagnetic energy shift of the
π−p atom, if we replace λ by the corresponding quantity
in pionic hydrogen.

To analyze the electromagnetic energy splittings of pi-
onium, we need to construct an effective Lagrangian that
describes the relativistic π+π− → π+π− amplitude at
threshold correctly up to and including order α. The anni-
hilation graph showed in Fig. 5 corresponds to a local four
pion interaction in the non-relativistic Lagrangian. How-
ever, the corresponding relativistic scattering matrix ele-
ment vanishes at threshold. We may thus obtain the elec-
tromagnetic energy-level shift from (5.12) by simply sub-
stituting µ+ →Mπ+/2, Σ+ → 2Mπ+ and λ→ 1/3〈r2π+〉,

∆Eem
π,nl = α4Mπ+

[
δl0
8n3 +

11
64n4 −

1
2n3(2l + 1)

]

+
α4M3

π+〈r2π+〉
6n3 δl0 +O(α5lnα). (5.13)

5.2 Decay channels of the πK atom

Next we discuss the contributions from other decay chan-
nels to the decay width of the π−K+ atom. As already
mentioned in Sect. 2, for S-states the only possible decay
channels areK0+n1γ+n2e

+e− and π0K0+n1γ+n2e
+e−,

where n1+n2 > 0. Here n1 denotes the number of photons

�
�

�
�

�
�

�
�

Fig. 5. Annihilation diagram π+π− → π+π− at order α in
the relativistic theory
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and n2 the number of e+e− pairs. The decay widths into
π−K+ +n1γ+n2e

+e− vanish due to lack of phase space.
Moreover, radiative transitions5 with the emission of one
photon are forbidden between two states with l = 0. For
the 2P-state of the π−K+ atom on the contrary, the main
annihilation mechanism is the 2p–1s radiative transition
into the ground state, followed by the decay into π0K0.

To investigate the decays into K0 + nγ, n = 1, 2, we
have to extend the Lagrangian in (A.4) and (A.5) to in-
clude terms with odd intrinsic parity, such as

LA = eD1B · (π†
−
←→
DK†

+K0 + h.c.)

+ e2D2E ·B(π†
−K

†
+K0 + h.c.) + · · · , (5.14)

where u
←→
D v

.= uDv − vDu. The covariant derivative D
is specified in Appendix A, E denotes the electric and B
the magnetic field. The couplings D1 and D2 are real and
may be determined through matching with the chiral ex-
pansion of the relativistic amplitudes. In the relativistic
theory, the π+K−K02γ vertex is contained in the Wess–
Zumino–Witten term [45]. The π+K−K0γ interaction oc-
curs only after inclusion of the odd intrinsic parity sector
of the ChPT Lagrangian at O(p6) [46]. The Hamiltonian
thus extended is hermitian and the operator τ̄ obeys the
unitarity condition,

τ̄ (z)− τ̄ †(z) = −2πiτ̄ (z)δ̄(z −H0 −HC)τ̄ †(z). (5.15)

The symbol δ̄ is understood as follows: in order to evaluate
the right-hand side of the equation, we insert a complete
set of eigenstates (H0 + HC)| β〉 = Eβ | β〉, omitting the
nth Coulomb eigenstate of the π−K+ atom. This implies
for the total decay width

Γnl =
∑

β

Γnl,β , (5.16)

where

Γnl,β =
∫

dpβ dν(P)2πδ(z − Eβ)〈Ψnl,P | τ̄ (z) |β〉
×〈β | τ̄ †(z) | Ψnl,0〉, (5.17)

and z is the solution of the master equation (3.10). Here,
dpβ denotes the phase space integral over the intermediate
state |β〉. At the accuracy we are considering, we may use
z = En. In the following, we estimate the order of the
various decays using this formula. As an illustration, we
start with the decay into π0K0. The relative 3-momenta
of the π−K+ pairs p and p′ count as order δ and we have

dν(p)dν(p′)Ψ∗
nl(p)Ψnl(p′) = O(δ3). (5.18)

As can be read off from the energy delta function, the
outgoing π0 and K0 3-momenta p3 and p4 count as order

5 Transitions between S-states with the simultaneous emis-
sion of two photons are not forbidden. However, they are sup-
pressed by a factor of α8.

δ1/2. This leads to a phase space suppression factor of
order δ1/2,

dν(p3)dν(p4)δ3(p3 + p4)δ (En − Eπ0K0) = O(δ1/2),
(5.19)

where

Eπ0K0 = Σ0 +
p2

3

2Mπ0
+

p2
4

2MK0
. (5.20)

Further, the reduced matrix element +(p | τ̄ (En) |p3)0 is
of O(1) and the S-wave decay width thus starts at order
δ7/2. The relation (5.17) allows one to rather straight-
forwardly rederive the next-to-leading order formula for
the decay width of the S-states. In order not to inter-
rupt the argument, we relegate the relevant calculation
to Appendix E, and continue here with the discussion of
the radiative decay into π0K0 + γ. The outgoing π0 and
K0 3-momenta again count as O(δ1/2), while the outgoing
photon 3-momentum k is of order δ. This can by seen by
performing the phase space integrations over p3, p4 and
k explicitly. In total, the phase space suppression factor
amounts to δ5/2,

dν(p3)dν(p4)
d3k
2 |k |δ

3(p3 + p4 + k)δ
(
En − Eπ0K0γ

)
= O(δ5/2), (5.21)

with

Eπ0K0γ = Σ0 +
p2

3

2Mπ0
+

p2
4

2MK0
+ |k | . (5.22)

The leading order contribution stems from Fig. 6a,b. The
corresponding reduced matrix element is given by

+(p,−p | VḠn
CV |p3,p4,k, r)0

= −eC2p · ε(k, r) (5.23)
× [f(Mπ+ ,p2,−p · k) + f(MK+ ,p2,p · k)

]
+ · · · ,

where

f(M,p2,±p · k)

=
1
M

[
α2µ+

2n2 +
p2

2µ+
+

k2

2M
+ |k | ±p · k

M

]−1

.(5.24)

This matrix element is of order δ1/2 which implies that
the decay width Γπ0K0γ starts at order δ13/2. However,
this contribution vanishes after performing the integra-
tions over p and p′.

Next, we consider the decay into K0+nγ, n = 1, 2 (see
Fig. 6c,d). Here, the outgoing K0 and photon 3-momenta
belong to the hard scale and thus count as O(1). For
π−K+ → K0 + γ, the Lagrangian (5.14) leads to a re-
duced matrix element of order δ3/2,

+(p,−p | V | p4,k, r)0 = 2eD1p · (k× ε(k, r)) + · · ·
(5.25)

Naive power counting implies that the decay width into
K0 + γ starts at order δ6. The matrix element (5.25) is
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Fig. 6. Leading order contributions to the decays into π0K0+γ
and K0 +nγ, n = 1, 2. The dot denotes the coupling C2, while
the box stands for the couplings D1 and D2 in LA. The twisted
lines denote transverse photons

odd in p and the S-wave decay width therefore even more
suppressed, while Γn1,K0γ starts at order δ6.

For the transition π−K+ → K0 + 2γ, we get from the
Lagrangian (5.14) a local matrix element of order δ,

+(p,−p | V | p4,k1, r1,k2, r2)0
= e2D2k

0
1ε(k1, r1) · [k2 × ε(k2, r2)]

−2e2D1ε(k1, r1) · [k2 × ε(k2, r2)]
+k1 ↔ k2, r1 ↔ r2, (5.26)

and the decay width of the S-states into K0 + 2γ thus
starts at order δ5. For the P-wave decay width intoK0+2γ
this contributions vanishes, because the matrix element in
(5.26) is p independent.

Processes with a higher number of photons may be
treated in an analogous manner. We expect them – using
power counting arguments – to be even more suppressed.
Since hard processes such as K0 + n1γ + n2e

+e−, n1 +
n2 > 0 do not contribute to the decay width at order δ9/2,
we may assume that all couplings in the non-relativistic
Lagrangian in (A.2), (A.4) and (A.5) are real. The total
S-wave decay width of the π−K+ atom amounts to

Γn0 = Γn0,π0K0 +O(δ5). (5.27)

The π−K+ atom in the 2P-state on the other hand decays
predominantly through the radiative transition into the
ground state. To evaluate this transition, we insert the
ground state plus one photon into (5.17). Here the photon
3-momentum k counts as order δ2, as can be read off from
the energy delta function δ(E2 − E1 − |k|). At leading
order, we get for the spontaneous 2p–1s transition the
well-known expression, see e.g. [57]

Γ21 =
(

2
3

)8

α5µ+ + · · · (5.28)

The result is of order α5 and given numerically in Table 3.
The first subleading decay mode of the 2P-state starts at
order δ6 with the odd intrinsic parity decay into K0 + γ.

The P-wave decay width into π0K0 in (4.6) is of order
δ13/2 and suppressed with respect to the radiative 2p–1s
transition by a factor of 10−7.

6 Vacuum polarization

What remains to be added are the contributions coming
from the electron vacuum polarization. The calculation of
these corrections within a non-relativistic Lagrangian ap-
proach has been performed in [22]. In our framework, the
contributions due to vacuum polarization arise formally at
higher order in α. However, they are amplified by powers
of the coefficient µ+/me, where me denotes the electron
mass. To the accuracy considered here, the only effect of
the vacuum polarization of the electron is a modification
of the Coulomb potential HC → HC + Hvac, with

+(p | Hvac |q)+ = −4α2

3

∫ ∞

4m2
e

ds
s+ (p− q)2

1
s

×
[
1 +

2m2
e

s

] [
1− 4m2

e

s

]1/2

. (6.1)

The vacuum polarization leads to an electromagnetic en-
ergy shift evaluated in [22,25,44],

∆Evac
nl = (Ψnl | Hvac |Ψnl) . (6.2)

For the first two energy-level shifts of pionium6 and the
π±K∓ atom, ∆Evac

π,nl and ∆Evac
nl are given numerically in

Tables 2 and 3. Formally of order α2l+5, this contribution
is numerically sizable due to its large coefficient containing
(µ+/me)2l+2.

The vacuum polarization also interferes with strong in-
teractions and contributes to the decay width and to the
strong energy shift. This can be seen by inserting the mod-
ified Coulomb potential into the master equation (3.10).
For the spectrum and the width of the π±K∓ atom, we
get

Γn0 =
8α3µ2

+

n3 p∗
n(a−

0 )2
(
1 + δK,n + δvacK,n

)
,

∆Eh
n0 = −2α3µ2

+

n3 (a+
0 + a−

0 )
(
1 + δ′

K,n + δvacK,n

)
. (6.3)

What concerns pionium, the decay width and strong en-
ergy shift are modified, according to

Γπ,n0 =
2α3

9n3 p
∗
π,n(a0

0 − a2
0)

2 (1 + δπ,n + δvacπ,n

)
,

∆Eh
π,n0 = −α

3Mπ+

6n3 (2a0
0 + a2

0)
(
1 + δ′

π,n + δvacπ,n

)
.(6.4)

The correction δvach,n, h = π,K is proportional to the
change in the Coulomb wave function [22] of the bound
system due to vacuum polarization,

δvach,n =
2δΨn0(x = 0)
Ψn0(x = 0)

. (6.5)

6 For pionium, the electromagnetic energy shift due to vac-
uum polarization is denoted by ∆Evac

π,nl.
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Table 2. Numerical values for the energy shift and the lifetime of the
π+π− atom

π+π− atom ∆Eem
π,nl [eV] ∆Evac

π,nl [eV] ∆Eh
π,nl [eV] 1015τπ,nl[s]

n = 1, l = 0 −0.065 −0.942 −3.8± 0.1 2.9± 0.1
n = 2, l = 0 −0.012 −0.111 −0.47± 0.01 23.3± 0.7
n = 2, l = 1 −0.004 −0.004 � −1 · 10−6 � 1.2 · 104

Table 3. Numerical values for the energy shift and the lifetime of the
π±K∓ atom

π±K∓ atom ∆Eem
nl [eV] ∆Evac

nl [eV] ∆Eh
nl [eV] 1015τnl[s]

n = 1, l = 0 −0.095 −2.56 −9.0± 1.1 3.7± 0.4
n = 2, l = 0 −0.019 −0.29 −1.1± 0.1 29.4± 3.3
n = 2, l = 1 −0.006 −0.02 � −3 · 10−6 � 0.7 · 104

Here, Ψnl stands for a generic Coulomb wave function and
h = π,K. For the ground state, this result is contained in
Table II of [22]. Formally, δvach,n is of order α2, but enhanced
because of the large coefficient containing µ+/me.

7 Numerics

In the numerical evaluation of the widths and energy shifts
of the π+π− and π±K∓ atoms, we use the following num-
bers: The ππ scattering lengths yield a0

0 = 0.220± 0.005,
a2
0 = −0.0444±0.0010 and a1

1 = (0.379±0.005) ·10−1M−2
π+

[4,5]. The correlation matrix for a0
0 and a2

0 is given in [5].
For the isospin symmetry breaking corrections to the ππ
threshold amplitudes (4.14) and (4.17) at order e2p2, we
use επ = (0.61± 0.16) · 10−2 and ε′π = (0.37± 0.08) · 10−2

[23,54]. The values for the πK scattering lengths are
taken from the recent analysis of data and Roy–Steiner
equations [33]. The S-wave scattering lengths yield a+

0 =
(0.045 ± 0.012)M−1

π+ , a−
0 = (0.090 ± 0.005)M−1

π+ [33], and
for the P-waves we use a1/2

1 = (0.19 ± 0.01) · 10−1M−3
π+

and a
3/2
1 = (0.65 ± 0.44) · 10−3M−3

π+ [33]. The correla-
tion parameter for a+

0 and a−
0 is also given in [33]. The

isospin breaking corrections to the πK threshold ampli-
tudes (4.4) and (4.9) have been worked out in [36,50,51]
at O(p4, e2p2). Whereas the analytic expressions for ε and
ε′ obtained in [36,50,51] are not identical, the numeri-
cal values agree within the uncertainties quoted in [51].
In the following, we use [51] ε = (0.1 ± 0.1) · 10−2M−1

π+

and ε′ = (0.1 ± 0.3) · 10−2M−1
π+ . For the charge radii of

the pion and kaon, we take 〈r2π+〉 = (0.452 ± 0.013) fm2

and 〈r2K+〉 = (0.363 ± 0.072) fm2 [58]. In the evaluation
of the uncertainties, we take into account the correlation
between the ππ (πK) scattering lengths.

The isospin breaking corrections δh,n and δ′
h,n, h =

π,K to the widths (4.5) and (4.16) and strong energy
shifts (4.10) and (4.18) are listed in Table 1. The energy
shift corrections δ′

K,n are smaller than in the case of pio-
nium. This distinction comes from the different size of the
isospin breaking contributions to the elastic one-particle
irreducible ππ and πK amplitudes. At leading order in

the chiral expansion, the isospin breaking part of the
π−K+ → π−K+ amplitude at threshold is suppressed by
a factor of Mπ+/MK+ with respect to the corresponding
quantity in ππ scattering.

As described in Sect. 6, (6.3) and (6.4), the width and
strong energy shift are modified due to vacuum polariza-
tion, according to

δh,n → δh,n + δvach,n, δ′
h,n → δ′

h,n + δvach,n, (7.1)

where h = π,K and δvach,n is defined in (6.5). For the ground
state, the corrections due to vacuum polarization yield
δvacK,1 = 0.45 · 10−2 and δvacπ,1 = 0.31 · 10−2[22]. However, for
the numerical analysis of the width and the strong energy
shift, we may neglect the contributions from δvach,n, because
the uncertainties in δh,n and δ′

h,n are larger than δvach,n itself.
For the first two states of the π+π− and π±K∓ atoms,

the numerical values for the lifetime τnl
.= Γ−1

nl , (τπ,nl
.=

Γ−1
π,nl) and the energy shifts are listed in Tables 2 and 3.

The numbers for the lifetime and strong energy shifts of
the S-states are valid at next-to-leading order in isospin
symmetry breaking. The bulk part in the uncertainties of
these quantities is due to the uncertainties in the corre-
sponding scattering lengths. For the lifetime of the 2P-
state, the numerical values are valid at leading order only,
and determined by the 2p–1s radiative transition in (5.28)
[59].

The energy-level shift due to vacuum polarization
∆Evac

nl (∆Evac
π,nl) [22,44] is specified in (6.2). Formally of

higher order in α, this contribution is numerically sizable.
We do not display the error bars for the electromagnetic
energy shifts. At order α4, they come from the uncertain-
ties in the charge radii of the pion and kaon only. In the
case of pionium, the uncertainties of ∆Eem

π,10 at order α4

amount to about 0.7%, while for the π±K∓ atom ∆Eem
10

is known at the 5% level. To estimate the order of magni-
tude of the electromagnetic corrections at higher order, we
may compare with positronium. Here, the α5 and α5 lnα
corrections [60] amount to about 2% with respect to the
α4 contributions.

Both, the electromagnetic and vacuum polarization
contributions to the energy shift are known to a high
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accuracy. A future precision measurement of the energy
splitting between the nS and nP states [61] will there-
fore allow one to extract the strong S-wave energy shift in
(4.10), and to determine the combination a+

0 + a−
0 of the

πK scattering lengths. The 2s–2p energy splitting yields

∆E2s−2p = ∆Eh
20 +∆Eem

20 −∆Eem
21 +∆Evac

20 −∆Evac
21

= −1.4± 0.1 eV. (7.2)

The uncertainty displayed is the one in ∆Eh
2 only. To the

accuracy we are working, we may neglect the strong shift
in the 2P state; it is suppressed by the power of α5. For
pionium the energy splitting between the 2S and 2P states
reads

∆Eπ,2s−2p

= ∆Eh
π,20 +∆Eem

π,20 −∆Eem
π,21 +∆Evac

π,20 −∆Evac
π,21

= −0.59± 0.01 eV. (7.3)

Again the uncertainty displayed is the one in ∆Eh
π,2 only

and we may neglect contributions from the strong shift in
the 2P state.

As an illustration, we alternatively use the ChPT
predictions for the πK scattering lengths [34,36] in the
numerical evaluation of the lifetime. The ChPT predic-
tions yield at order p4, a+

0 = (0.032 ± 0.016)M−1
π+ and

a−
0 = (0.079 ± 0.001)M−1

π+ [33]. Here, the errors include
the uncertainties in the values of the input parameters
only. The uncertainty in a−

0 is remarkably small, because
the isospin odd scattering length involves at O(p4) a sin-
gle low-energy constant Lr

5 [36]. On the other hand, a+
0

contains apart from the combination 2Lr
6 +Lr

8 five further
coupling constants [36], which are enhanced by one power
of MK+/Mπ+ with respect to the counterterm in a−

0 . For
a−
0 , the two-loop correction has to be rather substantial,

in order to reproduce the central value of the Roy–Steiner
evaluation. Very recently, the chiral expansion of the πK
scattering amplitude at next-to-next-to-leading order be-
came available [37]. According to the preliminary numeri-
cal study performed in [37], the S-wave scattering lengths
are at order p6 in reasonable agreement with the Roy–
Steiner evaluation [33]. The O(p4) ChPT prediction for
the lifetime of the π±K∓ atom in its ground state is

τ10 = 4.7 · 10−15 s, ChPT[O(p4)], (7.4)

whereas

τ10 = (3.7± 0.4) · 10−15 s, Roy–Steiner. (7.5)

The ChPT prediction is valid at next-to-leading order in
isospin symmetry breaking and up to and including O(p4)
in the chiral expansion.

8 Summary and outlook

We have considered the spectra and decays of π+π− and
π±K∓ atoms in the framework of QCD + QED. We eval-
uated the corrections to the Deser-type formulae for the

width and the energy shift – valid at next-to-leading order
in isospin symmetry breaking – within a non-relativistic
effective field theory. It is convenient to introduce a dif-
ferent book keeping for the π+π− and π±K∓ atoms. As
concerns pionium, we count α and (mu − md)2 as small
quantities of order δ; in the case of the π±K∓ atom both α
andmu−md are of order δ. The different counting schemes
are due to the fact that in QCD, the pion mass difference
starts at (mu − md)2, while the kaon mass difference is
linear in mu −md.

Consider first the energy shifts that are split into an
electromagnetic and a strong part, according to (2.1). The
electromagnetic part in (5.12) and (5.13) contains both
pure QED contributions as well as finite size effects due
to the charge radii of the pion and kaon. The strong en-
ergy shift of the π−K+ atom is proportional to the one-
particle irreducible π−K+ → π−K+ scattering amplitude
at threshold. In the isospin symmetry limit, the elastic
threshold amplitude reduces to the sum of isospin even
and odd scattering lengths a+

0 + a−
0 . The isospin break-

ing contributions to the amplitude have been evaluated at
O(e2p2, p4) [36,51] in the framework of ChPT. The result
in (4.10) displays the S-wave energy shift in terms of the
sum a+

0 + a−
0 and a correction of order α and mu −md.

For the first two energy-level shifts, the isospin symmetry
breaking correction modifies the leading order term at the
2% level. The isospin even scattering length a+

0 is sensi-
tive to the combination of low-energy constants 2Lr

6 +Lr
8.

The consequences of this observation for the SU(3)×SU(3)
quark condensate [39] remain to be worked out. In the case
of pionium, the strong energy shift displayed in (4.18) is
related to the ππ scattering lengths combination 2a0

0 + a2
0

and a correction of order α and (mu −md)2. For the first
two energy levels, these isospin symmetry breaking con-
tributions amount to about 6%.

A future measurement of the energy splitting between
the 2S and 2P state in the π+π− (π±K∓) atom will allow
one to extract the strong energy shift and to determine the
scattering lengths combination 2a0

0 + a2
0 (a+

0 + a−
0 ). This

is due to the fact that the electromagnetic energy shifts
are known to high accuracy and the strong P-wave energy
shifts in (4.12) and (4.19) are suppressed by the power of
α5. However, another higher order correction – generated
by the vacuum polarization – is numerically sizable and
contributes to the energy splitting in (7.2) and (7.3). For-
mally of order α2l+5, this correction is enhanced due to
its large coefficient containing (µ+/me)2l+2.

We now turn to the decay widths of the π+π− and
π−K+ atoms. At leading and next-to-leading order the
π+π− and π−K+ atoms decay into 2π0 and π0K0 exclu-
sively. Aside from a kinematical factor – the relativistic
outgoing 3-momentum of the bound system – their de-
cay width can be expanded in powers of α and mu −md.
By invoking ChPT, the result for the S-wave decay width
of the π−K+ atom may be expressed in terms of the
isospin odd scattering length a−

0 , and an isospin symme-
try breaking correction of order α and mu−md; see (4.5).
For the ground-state decay width, this correction modifies
the leading order Deser-type relation at the 4% level. The
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next-to-leading order result for the S-wave decay width of
pionium is given in (4.16). The expression for the ground-
state width agrees with the result obtained in [20,23,30].

For the 2P state of the π−K+ (π+π−) atom, the decay
width starts at order α5 with the 2p–1s radiative transi-
tion into the ground state; see (5.28). The P-wave decay
width of the π−K+ atom into π0K0 in (4.6) is suppressed
by the power of δ13/2. For pionium, the P-wave decay
width into a pair of two neutral pions vanishes due to
C invariance.

We find it very exciting that in view of the beauti-
ful work performed by our experimental colleagues, we
may expect that many of the above predictions will be
confronted with experimental data in a not too distant
future. This will certainly improve our knowledge of the
low-energy structure of QCD.
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A Non-relativistic Lagrangian

The non-relativistic Lagrangian must be invariant under
space rotation, P , T and gauge transformations. We do
not include terms corresponding to transitions between
sectors with different numbers of heavy fields (pions and
kaons). These interactions describe processes with an en-
ergy release at the hard scale. In general, such decay pro-
cesses are accounted for by introducing complex couplings
in the non-relativistic Lagrangian. However, as shown in
Sect. 5.2, intermediate states do not contribute to the de-
cay width at order δ9/2 and we may therefore assume the
low-energy couplings to be real.

In the sector with one or two mesons, the non-
relativistic effective Lagrangian is given by

LNR = L1 + L(0)
2 + L(2)

2 + · · · (A.1)

The first term contains the one-pion and one-kaon sectors:

L1 =
1
2
(E2 −B2)

+ π†
0

(
i∂t −Mπ0 +

∆

2Mπ0
+

∆2

8M3
π0

+ · · ·
)
π0

+ K†
0

(
i∂t −MK0 +

∆

2MK0
+

∆2

8M3
K0

+ · · ·
)
K0

+
∑
±
π†

±

(
iDt −Mπ+ +

D2

2Mπ+
+

D4

8M3
π+

+ · · ·
)
π±

+
∑
±
K†

±

(
iDt −MK+ +

D2

2MK+
+

D4

8M3
K+

+ · · ·
)
K±

∓ e
∑
±

D(E)
(

cπ
6M2

π+

π†
±π± +

cK
6M2

K+

K†
±K± + · · ·

)
,

(A.2)

with electromagnetic charge e, E = −∇A0 − Ȧ and B =
∇ × A. The covariant derivatives of the charged meson
fields are given by

Dtπ± = ∂tπ± ∓ ieA0π±, Dπ± = ∇π± ± ieAπ±,
DtK± = ∂tK± ∓ ieA0K±, DK± = ∇K± ± ieAK±.

(A.3)

The one-pion–one-kaon sector of total zero charge reads
at lowest order

L(0)
2 = C1π

†
−K

†
+π−K+ + C2

(
π†

−K
†
+π0K0 + h.c.

)
+C3π

†
0K

†
0π0K0. (A.4)

To evaluate the decay width and energy shifts of the
π−K+ atom, we need in addition the following terms with
two covariant space derivatives7:

L(2)
2 = C4

(
π†

−
←→
D

2
K†

+π0K0 + h.c.
)

+ C5

(
π†

−
←→
D

2
K†

+π−K+ + h.c.
)

+ C6(π
†
−π−)D2(K†

+K+)

+ C7

(
∇π†

−K
†
+∇π0K0 + h.c.

)
+ · · · , (A.5)

where u
←→
D

2
v
.= uD2v + vD2u. We work in the center of

mass system and thus omit terms proportional to the CM
momentum. We do not display time derivatives, for on-
shell matrix elements they can be eliminated by the use
of the equations of motion. The parameters Mπi (MKi)
denote the physical pion, (kaon) masses – there is no
mass renormalization in the non-relativistic theory; see
Sect. 3.3.

We work in the Coulomb gauge and eliminate the A0

component of the photon field by the use of the equations
of motion. At the accuracy we are considering, the term
linear in D(E) in (A.2) then reduces to a local interaction
which modifies the low-energy coupling C1,

C ′
1 = C1 − e2λ,
λ =

cπ
6M2

π+

+
cK

6M2
K+

. (A.6)

It is sufficient to match the non-relativistic couplings cπ
and cK at order δ0. We therefore consider the pion and

7 In the CM system and by the use of the equations of mo-
tion, we identify

π†
−K†

+π0
←→
∆ K0 = −4µ0(Σ+ −Σ0)π†

−K†
+π0K0

+
µ0

µ+
π†

−
←→
D

2
K†

+π0K0.
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kaon electromagnetic form-factors in the external field Aµ.
The results of the matching yield

cπ = M2
π+〈r2π〉, cK = M2

K+〈r2K〉, (A.7)

where rπ and rK denote the charge radii of the charged
pion and kaon, respectively. The remaining low-energy
constants Ci, i = 1, . . . , 7 may be determined through
matching the πK amplitude in the vicinity of the thresh-
old for different channels; see Sect. 3.3.

B Relativistic scattering amplitudes

First, we consider the S = 1 processes

π−K+ → π−K+, π−K+ → π0K0, π0K0 → π0K0,
(B.1)

in the isospin symmetry limit. The decomposition into am-
plitudes with definite isospin yields

T±;± =
1
3

[
T 3/2(s, t) + 2T 1/2(s, t)

]
,

T 00;± =
√

2
3

[
T 3/2(s, t)− T 1/2(s, t)

]
,

T 00;00 =
1
3

[
2T 3/2(s, t) + T 1/2(s, t)

]
. (B.2)

The isospin I = 1/2 and I = 3/2 components are related
via

T 1/2(s, t, u) =
3
2
T 3/2(u, t, s)− 1

2
T 3/2(s, t, u). (B.3)

The T+ (T−) amplitude

T+(s, t) =
1
3

[
T 1/2(s, t) + 2T 3/2(s, t)

]
,

T−(s, t) =
1
3

[
T 1/2(s, t)− T 3/2(s, t)

]
, (B.4)

is even (odd) under s↔ u crossing. In the s-channel, the
decomposition into partial waves reads

T I(s, t) = 16π
∞∑

l=0

(2l + 1)tIl (s)Pl(cos θ), (B.5)

where s = [ωπ+(p) + ωK+(p)]2, t = −2p2(1 − cos θ) and
θ is the scattering angle in the CM system.

The real part of the partial wave amplitudes near
threshold is of the form,

Re tIl (s) =
√
s

2
p2l
(
aI

l + bIl p
2 +O(p4)

)
, (B.6)

where aI
l denote the scattering lengths and bIl the effective

ranges.
There follow the ππ scattering processes:

π−π+ → π−π+, π−π+ → π0π0, (B.7)

with

T±;±
π =

1
6
[
T 2

π (s, t) + 3T 1
π (s, t) + 2T 0

π (s, t)
]
,

T 00;±
π =

1
3
[
T 2

π (s, t)− T 0
π (s, t)

]
. (B.8)

The decomposition into partial waves yields

T I
π (s, t) = 32π

∞∑
l=0

(2l + 1)Pl(cos θ)tIπ,l(s), (B.9)

where s = 4(M2
π+ + p2). At threshold, the partial wave

amplitudes take the form

RetIπ,l(s) = p2l
[
aI

l + p2bIl +O(p4)
]
. (B.10)

C Schwinger’s Green function

The Schwinger Green function fulfills[
E − q2

2µ+

]
+(q | GC(z) |p)+

+ e2
∫

dν(k)
1

(k− q)2 +(k | GC(z) |p)+

= (2π)3δ3(q− p), (C.1)

where E = z −Σ+. The explicit expression is given by8

+(q | GC(z) |p)+

=
(2π)3δ3(q− p)

E − q2

2µ+

− 1

E − q2

2µ+

4πα
(q− p)2

1

E − p2

2µ+

− 1

E − q2

2µ+

4παηI(E,q,p)
1

E − p2

2µ+

, (C.2)

with η = α/2(−E/(2µ+))−1/2. The function

I(E,q,p) =
∫ 1

0
dρρ−η

[
(q− p)2ρ+

η2

α2 (1− ρ2)

×
(
E − q2

2µ+

)(
E − p2

2µ+

)]−1

, (C.3)

contains poles at η = 1, 2, . . . or, equivalently, at z = En.
The integral

〈ḡn
C(En)〉 =

∫
ddp
(2π)d

ddq
(2π)d +(q | Ḡn

C(En) |p)+

=
αµ2

+

π

{
ψ(n)− ψ(1)− 1

n

+
1
2

[
Λ(µ)− 1 + 2ln

α

n
+ ln

4µ2
+

µ2

]}
, (C.4)

with ψ(n) = Γ ′(n)/Γ (n) develops an ultraviolet singular-
ity as d→ 3,

Λ(µ) = (µ2)d−3
{

1
d− 3

− Γ ′(1)− ln4π
}
. (C.5)

8 To simplify the notation, we omit the positive imaginary
part in E.
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D Non-relativistic integrals

What follows is a list of the non-relativistic integrals used
to calculate the πK scattering amplitudes in Sect. 3.3 as
well as in the evaluation of the decay width (Sect. 3.2)
and energy shifts (Sects. 3.2 and 5.1). Whenever neces-
sary, the integrations are worked out in D 	= 4 space-time
dimensions to take care of possible ultraviolet or infrared
divergences.

The non-relativistic propagator of the heavy fields
reads

GNR,h(x) .= i〈0|T h̄(x)h̄†(0)|0〉

=
∫

dDp

(2π)D
e−ipx 1

Mh + p2

2Mh
− p0 − iε

, (D.1)

where h̄ stands for the free fields, with h = π−, π0,K+,K0

and Mh denotes the corresponding mass. The tadpole di-
agram GNR,h(0) vanishes in dimensional regularization.
This can be seen by performing the integration over the
zero-component of the loop momentum explicitly. The re-
maining integral is scaleless and therefore zero in dimen-
sional regularization.

At α = 0, the elementary loop function to calculate a
diagram with any number of bubbles is given by

Ji(P 0) (D.2)

=
1
i

∫
dDl

(2π)D

1
Mπi + l2

2Mπi
− l0

1
MKi + l2

2MKi
− P 0 + l0

,

where i = +, 0. After the integration over the zero-
component of the loop momentum, we arrive at

Ji(P 0) =
∫

ddl
(2π)d

1
Σi + l2

2µi
− P 0

. (D.3)

The function is analytic in the complex P 0 plane, except
for a cut on the real axis for P 0 ≥ Σi. For P 0 ≥ Σi and
d 	= 3, we get

Ji(P 0) =
iµ3/2

i√
2π

√
P 0 −Σi

[
1 +

d− 3
2

× (−iπ− 2− Γ ′(1) + ln 4π + ln 2µi(P 0 −Σi)
) ]
.(D.4)

To obtain the contribution to the scattering amplitude, we
need to evaluate this function at P 0 = ωπ+(p) + ωK+(p).
At threshold, the integral J+(P 0) is of order p, while
J0(P 0) is given by

J0(Σ+) =
iµ3/2

0√
2π

√
Σ+ −Σ0. (D.5)

We now include the Coulomb interaction. The self-energy
diagram with one virtual Coulomb photon vanishes, be-
cause the integration contour over the zero momentum of
the photon can be closed in the upper half-plane, where

there is no singularity. Next, we evaluate the Coulomb
vertex function VC and the two-loop integral BC. The
Coulomb vertex function, see for example Fig. 1a, is given
by

VC(p, P 0) = −e2 1
i

∫
dDl

(2π)D

1
|p− l|2

1
Mπ+ + l2

2Mπ+
− l0

× 1
MK+ + l2

2MK+
− P 0 + l0

. (D.6)

After integrating over the zero-component of the loop mo-
mentum, the function amounts to

VC(p, P 0) = e2
∫

ddl
(2π)d

1
|p− l |2

1
P 0 −Σ+ − l2

2µ+

. (D.7)

The contribution to the scattering amplitude is obtained
for P 0 = ωπ+(p) + ωK+(p). We expand the function
around threshold which leads to

VC(p, P 0
thr) = −παµ+

2 |p | − iαθc +O(d− 3), (D.8)

where P 0
thr = Σ+ + p2

2µ+
and the infrared-divergent

Coulomb phase θc is specified in (3.27). The two-loop
Coulomb photon exchange diagram depicted in Fig. 1c
reads

BC(P 0) = −e2
∫

dDl1
(2π)D

dDl2
(2π)D

1
|l1 − l2|2

× 1

Mπ+ + l21
2Mπ+

− l01
1

MK+ + l21
2MK+

− P 0 + l01

× 1

Mπ+ + l22
2Mπ+

− l02
1

MK+ + l22
2MK+

− P 0 + l02
. (D.9)

Performing the integrations over the zero-components of
the loop momenta l1 and l2, we get

BC(P 0) = e2
∫

ddl1
(2π)d

ddl2
(2π)d

× 1
| l1 − l2 |2

1

P 0 −Σ+ − l21
2µ+

1

P 0 −Σ+ − l22
2µ+

. (D.10)

The expansion in the vicinity of the threshold amounts to

BC(P 0
thr) = −αµ

2
+

2π

[
Λ(µ) + 2ln

2 |p |
µ
− 1− iπ

]
+ O(d− 3). (D.11)

The ultraviolet pole term Λ(µ) is given in (C.5).
In the presence of transverse photons, the non-

relativistic integrals have to be treated properly in order
to avoid loop momenta coming from the hard scale. Oth-
erwise, these loop corrections lead to a breakdown of the
non-relativistic counting scheme. We use the threshold ex-
pansion [55,56] to disentangle the hard scale (given by the
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meson masses) from the soft scales. We illustrate the pro-
cedure for the two-point function of the charged pions and
kaons at order e2,

i
∫

dxeipx〈0|Th±(x)h†
±(0)|0〉

=
1

M+ + p2

2M+
− p0 −Σh(p0,p)

, (D.12)

where h = π,K and M+ denotes the corresponding mass.
The self-energy Σh is depicted in Fig. 4a (upper line). In
D 	= 4 space-time dimensions, we have

Σh(p0,p)

=
e2

M2
+

1
i

∫
dDk

(2π)D

p2 − (p · k)2/k2

−k2
(
M+ + (p−k)2

2M+
− p0 + k0

)
+O(e4). (D.13)

After integrating over the zero-component of the loop mo-
mentum, we arrive at

Σh(p0,p)

=
e2

M2
+

∫
ddk

(2π)d

1
2|k|

p2 − (p · k)2/k2

Ω + k2

2M+
− p·k

M+
+ |k|

+O(e4), (D.14)

where Ω = M++p2/(2M+)−p0. The threshold expansion
amounts to expanding the integrand in (D.14) in the small
parameter v, according to the counting9,

k = O(v2), p = O(v), Ω = O(v2). (D.15)

The threshold expanded self-energy,

Σ̂h(Ω,p) =
e2

2M2
+

p2Ωd−2 Γ (d)Γ (2− d)
(4π)d/2Γ

(
1 + d

2

) +O(e4),

(D.16)
contains an ultraviolet divergence as d→ 3,

Σ̂h(Ω,p) =
e2

6π2M2
+

p2Ω

(
L(µ) + ln

2Ω
µ
− 1

3

)
+O(e4, d− 3),

L(µ) = µd−3
[

1
d− 3

− 1
2

(Γ ′(1) + ln4π + 1)
]
. (D.17)

E Unitarity condition: Evaluation of the width

The unitarity condition in (5.17) renders the evaluation of
the S-wave decay width at next-to-leading order straight-
forward. It can be seen from (5.18) and (5.19) that in order
to evaluate the width at O(δ9/2), it suffices to calculate

9 Instead of first performing the integration over the zero-
component of the photon field, we may apply the threshold
expansion directly to (D.13), with k0 = O(v2).

the matrix element +(p | τ̄ (En) |p3)0 at order δ. Here, the
following term occurs

Γn0,π0K0 = −C2
2
M3

π0 +M3
K0

8M3
π0M3

K0

|Ψn0(x = 0)|2

×
∫

dν(p3)2πδ
(
En −Σ0 − p2

3

2µ0

)
(E.1)

× p4
3


 1

z −Σ0 − p2
3

2µ0

+
1

z̄ −Σ0 − p2
3

2µ0



∣∣∣∣∣∣
z→En+iε

+ · · · ,

which is generated by the matrix element +(p |
HSGC(z)HD |p3)0 and its hermitian conjugate. This con-
tribution can be calculated by the use of

−2πiδ
(
En −Σ0 − p2

3

µ0

)

=
1

z −Σ0 − p2
3

µ0

− 1

z̄ −Σ0 − p2
3

µ0

∣∣∣∣∣∣
z→En+iε

, (E.2)

and the result for the decay width at order δ9/2 agrees
with (3.20).
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